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I. INTRODUCTION

Ferroelectric films are being investigated for use in optical waveguides [1-3], optical switches
[3-5], surface acoustic wave transducers [6], and nonvolatile ferroelectric memories [7]. Films
for these applications must have reproducible, homogeneous electronic and electro-optical
properties. These properties can be obtained in ferroelectric films deposited by metallo-or-
ganic solution deposition [(MOSD) or sol-gel] processing. MOSD is a solution-based deposi-
tion method where soluble metallo-organic compounds are intimately mixed and polymerized
to yield a viscous coating solution. Metallo-organic compounds consist of a central metal
atom bonded to organic ligands by oxygen. The solution is used to form a dried, gelatinous
film on the substrate by a number of different coating techniques. Ceramic films with a nar-
row distribution of either microscopic (less than 10 nm) or macroscopic sized grains can be
grown from the amorphous film, depending on the thermal processing conditions.

MOSD processing has been applied to a number of different materials, ranging from amor-
phous glasses to highly crystalline films [8]. In this report, we present the results of our work
on the MOSD processing of ceramic lead zirconate titanate (PZT) films. The lanthanum-con-
taining transparent ceramic, lead lanthanum zirconate titanate (PLZT), is an important fer-
roelectric material for electronic and electro-optical applications. In the PLZT solid solution
system, the crystal structure and the electro-optical properties can be tailored for a particular
application by changing the stoichiometry [9]. Unlike the lanthanum-free PZT ceramics made
from powders, which are translucent or opaque, PZT films are transparent. The challenge in
making these PZT films lies in simultaneously obtaining uniform composition, the proper
crystal structure, and small grain for low light scattering.

The MOSD processing of films in the PLZT system has been studied extensively. The mixing
and reaction of precursors in solution, drying and consolidation, and annealing steps are criti-
cal in obtaining dense, optically transparent, ferroelectric films [10-17]. A related solution
technique, metallo-organic deposition, uses long-chained carboxylic acid salts to make similar
films [18]. In this report, the effects of the solution composition, hydrolysis, and thermal pro-
cessing on the film morphology, phase segregation, and ease of annealing will be addressed to
show the advantages of the MOSD technique.
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II. MOSD SOLUTION REACTIONS

In the MOSD process, metal alkoxides and metal carboxylic acid salts are mixed in solution.
These carbon-oxygen-metal bonded metallo-organic compounds are reacted with water to
form a metal-oxygen-metal bonded polymer in solution [19]. Polymerization increases the
viscosity needed to control the thickness and drying rate of the films. For example, lead al-
koxide and titanium alkoxide compounds can be hydrolyzed to form hydroxide-alkoxide com-
pounds:

Pb(OR) 2 + H20 - Pb(OR) (OH) + ROH (1)

Ti(OR) 4 + H 20 -- TI(OR) 3 (OH) + ROH (2)

The alkoxide-hydroxides can react to form the metal-oxygen-metal polymer linkages:

(RO)Pb(OH) + (HO)Ti(OR) 3 -- (RO)Pb-O-Ti(OR) 3 + H20 (3)

Zirconium alkoxides hydrolyze and react with lead through similar reactions. Further hydro-
lysis and polymerization can occur, resulting in the polymer precursor for PZT in solution.
The complete reaction of the starting materials with water to form PbZrxTilO 3, where (0 <
x < 1), is:

Pb(OR)2 + x Zr(OR) 4 + (1-x) Ti(OR)4 + 3H 20-o

PbZrxTilxO 3 + 6ROH (4)

The amount of water added to the solution is expressed as a molar ratio of water concentra-
tion to the total concentration of metals:

h = [H 20]/([Pb] + [Zr] + [Ti]) (5)

From Eqs. 4 and 5, h = 1.5 corresponds to the stoichiometric amount of water for complete
reaction. Polymerization of the precursors increases the viscosity of the solution so that it can
be coated on substrates by spinning, dipping, or spraying.



III. EXPERIMENTAL

PbZrxTil.O 3 films with compositions specified by (x:l - x), where 0 < x < 1, were pre-
pared from stoichiometric solutions of metallo-organic precursors [15-17]. Lead 2-ethylhexa-
noate, zirconium tetrapropoxide, and titanium tetrabutoxide (obtained from Aipha/Ventron)
were mixed 'n isopropanol to form a solution that was about 0.05 M with respect to PZT Af-
ter addition of water for hydrolysis and refluxing for about 1 h, the solution was spun on fused
silica or platinum substrates. Three-stage thermal processing in air (consisting of drying, con-
solidation, and annealing steps) was needed to avoid premature crystallization and growth of
large, coarse grains. During thermal processing, the film was dried at 100°C to remove the
solvent; it was then consolidated at 300°C to remove most of the other organics. The result
was the formation of a dense, amorphous film. The coating, drying, and consolidating steps
were repeated six to eight times to deposit an amorphous film. 'i he film was then annealed at
525"C to initiate crystallization of small, uniform grains to preserve transparency of the
600-800 nm thick films. Diffuse light scattering was measured at a wavelength of 632.8 nm
from samples deposited on fused silica substrates to characterize the optical quality of the
films.



IV. RESULTS AND DISCUSSION

A. HYDROLYSIS AND CRYSTALLINITY

Reaction of precursors in the solution, the composition of the PZT and thermal processing
conditions are major factors in determining film crystallinity and morphology. Crystalline,
perovskite structure is necessary for ferroelectricity in PZT films. First, we showed that par-
tial reaction of precursors in the solution was more effective in producing crystalline PZT
than complete reaction of the precursors with water. This observation was made on rhombo-
hedral phase PZT at a ratio of Zr:Ti of 0.55:0.45. The effect of hydrolysis and polymerization
of the precursors on crystallization during thermal processing was studied using Fourier trans-
form infra-red (FTIR) spectroscopy. Crystallization of the gel resulted in the emergence of a
new vibrational band at 540 cm- 1, assigned to the vibration of metal-oxygen octahedra in the
perovskite lattice [20,211. The intensity in this band was proportional to the amount of crys-
tallization taking place during annealing of the amorphous gel. In Figure 1, the band at 540
cm-1 is larger for h = 0 and h = 0.5 than for the fully reacted sample (h = 1.5). The mor-
phology of these films is shown in Figure 2. The porous structure obtained for h = 1.5 indi-
cates that extensive reaction of the precursors formed highly cross-linked and amorphous
polymers that were resistant to densification during annealing at 525*C. At lower water con-
centrations, the amount of cross linking was reduced. As a result, the oligomers formed were
more flexible and more conducive to densification than the highly polymerized solution pre-
cursors. Our results indeed showed that complete reaction (h = 1.5) resulted in porous films
and that less polymerization of the precursors (h = 0 and h = 0.5) increased the crystallin-
ity of MOSD films at lower temperature.

The crystallinity of films prepared from solutions with moderate amounts of water (h = 0.5)
was compared to the crystallinity of films prepared from dry solutions (h = 0). Lead titanate
("PT) films were cast on platinum substrates from dry (h = 0) or partially hydrolyzed
(h = 0.5) solutions and were consolidated at 300"C. After deposition of six layers, the films
were annealed at either 550 or 600"C. X-ray diffraction was used to measure the intensity of
the (110) PZT peak for films listed in Table 1. The peak intensity was proportional to the
amount of crystallization in the PZT films. The peak intensities were normalized to the peak
intensity of the film annealed at 600"C for 30 min.

The results in Table 1 indicate that annealing at higher temperatures accelerates crystallization
as expected [131. In addition, these results show that partial reaction (h = 0.5) also is re-
sponsible for increasing the degree of crystallization compared to samples made from dry
(h = 0) solutions. In partially hydrolyzed films, the metal-oxygen-metal bonded oligomer acts
as a molecular template for subsequent nucleation and crystallite growth. These results show
that hydrolysis can be used to decrease the annealing temperature. In certain applications,
such as the deposition of ferroelectric films on semiconductor substrates, lowering the pro-
cessing temperature is beneficial to minimize reactions at the interface.
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Figure 1. Spectral reflectance FTIR of 800 nm thick PZT films on platinum annealed at
525"C for 30 min with (a) h = 0, (b) h = 0.5, and (c) h = 1.5.
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Table 1. Effect of Prehydrolysis and Annealing Conditions

Hydrolysis, Consolidation Intensity of (110)

h Temperature, *C Time, min Diffraction peak, %

0 550 30 70

0 550 60 72

0.5 550 30 82

0 600 30 79

0.5 600 30 100

0.5 600 60 99
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B. COMPOSITION

Bulk ceramic structure was obtained in 800 nm thick films prepared by MOSD in the PZT
solid solution system. The phases present were determined in films where the zirconium-to-
titanium ratio was varied from 60:40 to 0:100. After being annealed at 525"C for 2 h, the crys-
tal structure of the films was characterized by x-ray diffraction. As smaller titanium ions
were substituted for zirconium in PZT films, the lattice contracted, as shown from the data in
Figure 3. A phase transition from rhombohedral to tetragonal occurred at about 0.52 PbZrO3

in the film, as expected from the bulk ceramic data reported by Jaffe et al. [22]. This result
indicates that the MOSD process can be used to prepare PZT with bulklike properties and
that the phase diagram developed from bulk ceramic data can be used to guide the selection
of composition and tailor the electronic properties of these thick films.

The micrographs in Figure 4 indicate that film quality depends on the composition of the film.
Less cracking was observed in the 20:80 PZT composition (tetragonal structure) compared to
the 60:40 composition (rhombohedral structure) films on fused silica substrates. During cool-
ing through the Curie temperature, differences in thermal expansion between the film and the
substrate can result in stress and cracking of the film. Lead titanate-rich PZT compositions
expand during cooling through the Curie temperature as they change from a cubic to tetrago-
nal structure [23]. Because the substrate contracts during cooling, the film is formed with
compressive stress. Lead zirconate-rich films contract when they are cooled through their
Curie temperatures [23], resulting in a film held in tension that is subject to cracking. The
magnitude of these effects is dependent on the match of the thermal expansion coefficient of
the film with that of the substrate. Lower stress and cracking is also correlated to lower dif-
fuse light scattered from titanium-rich films, as shown in Figure 5. In addition to cracking,
light is scattered in these films from grain boundaries and surface roughness. On fused silica
substrates, high optical quality lead titanate films are easier to grow than compositions con-
taining high lead zirconate concentrations.

We examined the effect of lead concentration in the films during processing. In films that
were about 2% deficient in lead, nonuniform nucleation and segiegation of a zirconium diox-
ide phase occurred. In films that were about 2% lead rich, lead oxide acted as a flux that
avoided the formation of trace-contaminating oxide phases. Because the excess lead oxide
tended to segregate on the edge of the substrate, it did not affect the quality of the films. The
morphology of these films is shown in the optical micrographs in Figure 6. The lead-rich
films have relatively few features, while the lead-poor films have large, coarse grains.

C. THERMAL TREATMENT

The perovskite crystal structure, easily obtained at high temperatures, is necessary for ferroo-
lectricity in PZT films. However, in many applications, consolidation and crystallization must
be achieved at the lowest possible temperatures. Low temperature processing minimizes mi-
crocracking by stress that results from differential thermal expansion of the substrate and

15
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Figure 3. Lattice contraction due to titanium substitution for zirconium in PZT observed by
x-ray diffraction in PZT films. Two regions were observed consistent with the ceramic: a
high-zirconia rhombohedral phase and a high-titanate tetragonal phase.
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Figure 4. Surface morphology of PZT films with (a) high zirconium concentration,
60:40, and (b) high titanium, 20:80. Note the presence of stress-induced microcrack-
ing and large cracks in (a), which is minimized in (b).
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Figure 5. Light scattering from PZT films deposited on fused silica.
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Figure 6. Optical micrographs of PZT films processed with (a) excess lead oxide
or (b) low lead oxide.
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film. In addition, thermal diffusion and contamination of the film or substrate are reduced.
Consolidation at low temperatures is particularly desirable to avoid reactions of the hot or-
ganic by-products with the substrate. In Figure 7, we show the effect of consolidation temper-
ature on the crystallinity of films annealed at 5500C. In films consolidated at 5000C, the
growth of the perovskite structure was reduced by the presence of a cubic pyrochlore-like
phase related to Pb 2Ti2O 6 [24]. The films consolidated at 3(M) and 400 0C are perovskite 1251.
with a trace amount of the pyrochiore phase. The presence of the trace pyrochlore phase is
further reduced at 600 0C. These results and the time-temperature-transformation diagrams
published by Chen et al. [141 indicate that PZT films can be consolidated (and annealed) at a
wide range of temperatures. Selection of processing temperatures will depend on the reactiv-
ity and thermal expansion coefficients of the substrate and PZT film.
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Figure 7. X-ray diffraction 0-20 scans of PZT films with a 52:48 composition deposited on
platinum and consolidated at (from the top) 300, 400. 500, and 600*C.
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V. SUMMARY

In summary, the MOSD technique can be used for making a wide range of PZT composi-
tions with bulk structure and properties. Film morphology is affected by metal stoichiometry,
hydrolysis and polymerization of the sol-gel solution, and thermal treatment. The PZT lattice
parameter decreases with the amount of titanium in PZT, in agreement with ceramic data. A
slight initial excess of lead in the coating solution improves film morphology. Unlike tradi-
tional powder ceramic techniques, MOSD permits the growth of small uniform grains. Films
can be consolidated prior to crystallization at temperatures from 275 to 600°C, except for
about 500"C, where the pyrochlore is stable. The ability to tailor these properties by the
MOSD process will result in electro-optical films for new device applications.
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